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Abstract 

 

 Each year the Air Force spends billions of dollars on Test and Evaluation to 

ensure acquisition programs roll out the best possible products. In 1997, the National 

Research Council assembled to evaluate the overall procedure used in procuring various 

platforms with system planning, research, development and engineering (SPRDE) and 

program management (PM) processes. In their final report, they claimed that the full 

advantages of statistical practices, simulation, model-test-models, and incorporation of 

prior test information into current test practices have not been fully utilized. To examine 

one of the report’s recommendations, this thesis defines and explores a methodology 

using simulation to augment or replace test data in lieu of operational testing. 

Specifically, a validated simulation model employs non-critical factor data from 

preliminary small sample operational testing. The simulation then generates posterior 

distribution data to replace the corresponding data in the final test matrix.   If useful, data 

generated by a validated simulation model can be used in lieu of actual operational test 

data for selected non-critical factors. This provides T&E squadrons a means to decrease 

the level of live operational testing on non-critical factors. Therefore, T&E can be more 

efficient as less runs are needed to evaluate system factors of interest. This thesis defines 

methods to use test data to validate simulation results, us simulation data as evidence for 

subsequent operational testing, and use simulation to potentially replace test data. 
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INCORPORATION OF PRIOR TEST INFROMATION TO IMPORVE TESTING 

RESULTS VIA SIMULATION AND DESIGN OF EXPERIMENTS 

 

 

1. Introduction 

1.1 Thesis Introduction 

Throughout the Air Force’s history, test and evaluation (T&E) processes advance 

to meet the competing demands of increasing technology and the ever common reduction 

in the Department of Defense’s fiscal budget. To counter this never ending struggle, T&E 

squadrons look for more inventive techniques such as design of experiments, Bayesian 

analysis, simulation, decision analysis, systems engineering, and advance statistical 

practices for innovative testing approaches. To demonstrate the important applications of 

Subjective Bayesian simulation principles in the test and evaluation process, this thesis 

applies these existing concepts to the previous research conducted in Wellbaum et al 

(2010). Specifically, a methodology is defined that utilizes a small sample of preliminary 

operational test data, a validated a simulation model, and critical test factors identified via 

design of experiments (DOE).  The simulation is used to generate a priori evidence to 

support operational test results. The simulation is also used as a means to potentially 

screen out actual operational test events.   
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1.2 Problem Statement 

During the system engineering process for a new platform certain test criterion 

must be met during the Material Solutions and Technology development phases before 

the program can advance to initial rate production. Since funds are generally fixed and 

limited, these tests can strain a program budget; going over the budget can often cancel a 

program. Thus, effective and less costly ways of conducting experimentations are always 

needed for the test and evaluation enterprise. In 1997, a National Resource Council 

evaluated the effectiveness of Department of Defense (DoD) testing practices and 

concluded that “the current practice of statistics in defense testing design and evaluation 

does not take full advantage of the benefits available from the use of state-of-the-art 

statistical methodology”(7). They further recommended that model-test-model, a 

technique in which simulation results augment operational testing, should be 

implemented more frequently in appropriate testing scenarios (7). 

This thesis integrates principles from simulation, subjective Bayesian, and design 

of experiments to define methods for conducting test and evaluation making specific use 

of simulation results. If successful, such methods could be more efficient, less costly, and 

just as effective as results from current live test and evaluation practices.  

 

1.3 Scope 

This thesis is focused on subjective Bayesian simulation techniques applied to test 

data rendered from overhead watch and loiter (OWL) experiments. Specifically, the work 
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utilizes a pre-existing simulation model validated with OWL preliminary test data, 

evaluates the ability of the simulation to provide a priori evidence to support test event 

inferences, and provides posterior data on non-critical factors, which are swapped into the 

final test data model. Although, this application of predictive simulation is new, 

predictive simulation has been applied to a variety of applications in the test and 

evaluation arena. 

  



4 

2. Literature Review 

 

 Bayesian probability, although introduced by Thomas Bayes, didn’t gain 

popularity until the 18th century by a French mathematician Pierre-Simon Laplace (3). 

Since that time, there have been two major factions of Bayesian scholars; those that view 

probability objectively, and others that believe Bayesian probability is subjective in 

nature. This thesis is primarily concerned with subjective Bayesian applications; although 

there are traditional benefits from objective Bayes practices.  

 Objective Bayesian principles are founded on the belief that one can take prior 

information, generate posterior information with mathematics, and gain insight into the 

unknown. James Berger describes Bayesian analysis as, “…simply a collection of ad-hoc 

but useful methodologies for learning from data” (3).  Berger claims that objective 

principles offer the following advantages : “highly complex problems can be handled, via 

Markov Chain Monte Carlo; very different information sources can easily be combined; 

multiple comparison are automatically accommodated; methodology does not require 

large sample sizes; and sequential analysis is much easier”(3). Objective Bayesian 

applications require picking the right prior distributions to generate posterior 

probabilities. If chosen poorly, objective Bayesian principles can lead to improper 

distributions which, in turn, can lead to false or less accurate statistical conclusions. 

These false conclusions are more prominent when modeling complex systems, or 

scenarios in which no subject matter expert can verify prior distribution accuracy. For 

these reasons, “objective Bayesian analysis is a convention we should adopt in scenarios 

in which a subjective Bayes analysis is not tenable” (3). This leads one to believe 
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subjective Bayes principles, if relevant experts are available, yield a more secure estimate 

on posterior probability. 

 Subjective Bayes analysis does not significantly differ from objective Bayesian 

except for the premise of “verified” prior distributions. Verified in this case refers to a 

confidence in prior distributions when obtained through a subject matter expert (SME).  

However, difficulties arise in subjective practices when soliciting probability 

distributions from SME’s. Individual biases like anchoring, familiarity with round 

numbers, can lead to poor prior distribution estimates. Elicitation biases can be mitigated 

through the use of various probability soliciting techniques such as assessing extreme 

probability estimates or the popular “probability wheel.” In this thesis, prior distributions 

are derived by using a simulation model presumed to provide valid output results.  

 Simulation is the computer-based imitation of the operation of a real-world 

process or system over time (2). With simulation modeling, one can create a real-time 

system yielding estimates of various real world processes. The goal is to use the 

simulation to model real-life processes or system functions, in the hope understanding 

them and possibly finding ways for improving upon them in some manner. Through 

modeling and simulation, myriad companies have been able to analyze their business 

practices to improve processes, cut costs, and reduce man hours required. For example, 

“Knowledge modeling and resource-management techniques and tools, based on 

simulation and other decision analysis methodologies,” yielded over 69.7 million dollars 

in savings (2). In this research, simulation provides an additional benefit since the model 

used has been validated to the real environment (via actual test results). Thus, posterior 

distribution data utilized in the final model are assumed to fall within the range of values 
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one observes during actual testing using the real system. Using a valid simulation ensures 

that the resulting simulation-based testing yields relevant and accurate results which drive 

valid conclusions about the actual testing. In essence, simulation is utilized as a subject 

matter expert to verify and validate conclusions pertaining to the real system; a form of 

subjective Bayesian analysis.  

 Simulation-based subjective Bayesian applications “…have been around for some 

time, but have been increasingly applied and developed in recent years” (3). This is due 

to the advantages simulation offers to improve prior distribution certainty. Notably, there 

can never be absolute certainty about prior distributions; they are subjective. However, 

validated models offer additional confidence in prior distribution selection. This 

increased confidence from simulation platforms has impacted recent distribution 

projections in fields such as healthcare, logistics, transportation, distribution, and military 

applications. In some cases, real data distributions are used as the preliminary foundation 

upon which the simulation subsequently runs. The next case utilizes simulation maps 

GPS routes in cars.  

Palagummi (9) applied simulation and Bayesian techniques to assess the viability 

of GPS devices to predict driving routes along avenues of low congestion.  In his study, 

the entire map of an area of interest to a driver is divided into grids. The next grid that a 

person drives into is generated and mapped via the GPS, and the simulation uses the 

current status and history of the prospective grid as prior information. With this 

information, the simulation generates posterior prediction information used by the GPS to 

plan routes for the driver.  The information required includes static and dynamic data 

such as topology, signal control, and vehicle flow rates.  At the beginning of each 
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simulation run, the avenues are divided into overlapping “simulation windows”. “Each 

‘road link’, defined by starting and stopping coordinates between two intersections, is 

defined as a “the essential resolution within a simulation window” (9).  Each simulation 

window stores the information o road links within that window. Palagummi (8) defines 

an active region as, “the set of simulation windows that are currently simulated by the 

vehicle.” Furthermore, each road link in the active region is dubbed an “active link”, and 

continuous data for these links is obtained for the simulations. All this continuous 

information will influence the different outcomes of the simulator.  

The simulator, first, updates information on all active links and windows, then 

discards any old active windows.  Prior information needed for the simulation is then 

downloaded. The simulation then generates all posterior information for the region of 

interest based on the prior information obtained earlier. This process continues until the 

predefined simulation stop time is reached when all results are recorded and the 

simulation ends. These results, based upon using different initialization techniques, are 

then compared in the final evaluation.  

Palagummi (9) defines three different initialization techniques called “empty 

grid” initialization, “simulation with flow rates”, and “simulation with flow rates and 

queue lengths”. Empty grid initialization entails starting the simulation with unpopulated 

windows that populate as vehicles enter and exit the windows. Simulation with flow rates 

incorporate flow rates based on mean vehicular headway where vehicles are distributed 

uniformly across a road link by the mean vehicular gap (9). The third initialization 

technique (simulation with flow rates and queue lengths) incorporates flow rates and 

queue lengths of slowly moving traffic, based on continuous mean queue length data, on 
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the way to traffic lights. Results from these three initialization techniques are compared 

to ground truth, the actual transversal time of an active link, as well among one another.   

Palagummi found that empty grid initialization underestimated the ground truth. The 

other two initialization methods yielded vehicle travel times more relevant to the actual 

situations. 

  Pengfei Li (8) uses simulation, with prior distribution information, to keep drivers 

out of what he termed the “Dilemma Zone” (DZ). The DZ “…is an area at high-speed 

signalized intersections, where drivers are indecisive of stopping or crossing when 

presented with yellow indicator” (8). Li utilizes a simulation-based, Markov process as a 

way to predict the number of drivers in the DZ. This posterior prediction data, in turn, 

indicates the best time to transition the light to yellow to decrease collisions amongst 

vehicles traveling though the intersection. The equation used to predict the hourly 

number of vehicles in the DZ is  where, at step time t,   is 

the predicted number of vehicles caught in the DZ,  is the current green light duration, 

is the calculated number of vehicles caught in the DZ over an hour,  is the time 

loss between green lights, and  is the average green light durations on conflict phases 

(8). If the number of vehicles in the DZ is less than predicted, then the green light period 

ends. But if the number of vehicles in the DZ is “minimally equal” to the predicted value, 

then the green light period is extended one time step. To keep the predicted value 

accurate, Li uses a “rolling horizon” technique which “collects state transitions during the 

(head) time of each stage, updates the matrix according to new data, and then applies the 

new matrix during the (tail) time” (8). This algorithm was deployed in VISSIM which fed 
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real time data to into the algorithm and then evaluated when to change the light 

depending on what output data it received. To model current traffic volume patters, data 

were collected every fifteen minutes, over a 9 hour span, from Peppers Ferry Road and 

fed into VISSIM. The measurement parameters of interest were: “probabilities of max 

outs in an hour” (lights that change green because they reached their allotted time), and 

“the average number of vehicles caught in the dilemma zone” (8). The results of the 

simulation were compared to a “green extension system,” using advance detectors, to 

extend the green light, to circumvent a collision caused by a car in the DZ. Li concluded 

that the green extension system failed to minimize max-out ratios, whereas the prediction 

model kept more vehicles out of the DZ in heavy traffic and max outs below 8% (8). 

Clearly predictive simulation offers great advantages when applied to traffic patterns; but 

studies have shown that the public health department can also benefits from predictive 

simulation when modeling population trends.  

Bohk (5) created the “probabilistic population projection model (PPPM)” to 

predict the future demographic of an area based off past trends, from 1990 to the jump off 

year of 2006, to make projections from 2007 to 2048 (5). The algorithm required a large 

number of input parameters to effectively predict future populations: current birth rate, 

mortality rates, fertility rates, sexual birth proportion of males and females, as well as 

immigration trends. The model also required a set of rules, or “assumption paths,” that 

contain estimated future values of a certain input parameter (5). Assertion paths represent 

possible evolutions during the projection horizon which were determined by a subject 

matter expert involved in the modeling.  After all constraints and inputs were defined, the 

model was simulated via Monte Carlo. The first “limited type” simulation differed from 
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the second (open type), in that the yielded projections were not influenced by improper 

pairing of assumptions due to the addition of “set types”. For each set type, which was 

essentially population propagation rules, the modeler would define consistent 

assumptions so that each input parameter was included into a corresponding set type.  An 

example would be a set type labeled “fertility rates”, which restricts the introduction of 

births to individuals over the age of eighteen. Results showed that the limit type 

simulation predicted a population between 65.51 and 69.3 million people, while the open 

type yielded a 65.58 to 69.1 million estimates. Significant emphasis was put on the fact 

that the limited type showed a 7% smaller variance. Bohk claims that the matching of 

improper inputs to assumptions paths caused an averaging effect in the data from the 

“open type” simulation which could explain the greater variance.  

 An important issue in the medical field is the evaluation of drug effectiveness in 

patients. Bayesian simulation is used to predict the correct level of medication to 

prescribe a patient. Historically, patients must visit a doctor for multiple follow up 

appointments in order to determine if the prescription drug is working at desired levels. 

This procedure is costly, time intensive, and uncomfortable for the patient since blood 

work is usually required while over prescribing medication can cause discomfort. Blau 

(4) created a subjective Bayesian model-based methodology, using simulation, to 

determine the optimal drug dose for an individual while minimizing the required invasive 

procedures.  

Blau’s model required existing Pharmaco-Kinetic/PharmacoDynamic (PK/PD) 

population data, available during the drug development phase, as prior distribution 

information.  Then, using traditional Bayesian principles and Markov Chain Monte Carlo 
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sampling techniques, posterior probability distributions for individuals were created to 

determine the drug levels after each dose. The effectiveness of this technique relies on the 

concept of a “therapeutic window”, which is the desired “drug plasma concentration, 

which is less than an acceptable risk of a toxic side effect and greater than an acceptable 

level of efficacy” (4). By working within the therapeutic window, Blau demonstrates the 

effectiveness of his prediction model.  

First, data collection on an individual must be taken to estimate his PK/PD 

parameters. With this information one can predict the individual’s therapeutic window, 

determine the proper doses available, and “…candidate dose intervals convenient to the 

individual to find a regimen that maximizes the therapeutic window” (4). However, 

instead of collecting real data, Blau generated all required information on 8 subjects using 

simulation and design of experiments.  Data derived using a full, two-level factorial 

design over “reasonable” parameters was entered into ModQuest to predict posterior 

distributions for the PK/PD parameters. The results were compared to “the posterior 

probability distribution obtained where the means of the individual posterior parameter 

distribution for the eight subjects were averaged and standard deviation obtained” (4). 

 Blau’s method used was able to determine the correct posterior PK/PD distribution for 

the eight subjects. He states, “the personalized pharmacokinetic parameters are in good 

agreement with the values used to generate them”, and rarely was more than one test for 

data needed.  

Steffens (10) designed a tactical prediction system based on data mining and 

simulation. The posterior results strive to reduce the cognitive work load placed on a 

commander, by predicting future tactical scenarios.  In his methodology, a user can 
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classify various similar states into cluster sets which are then checked for ambiguity 

using the k-means-algorithm (MacQueen 1967) (10). After aerial reconnaissance and 

communication data are acquired, the system stores a state relative to the field conditions. 

Using a function, “c (A)” (defined by Steffens), a state can be mapped into a cluster if the 

similarity between the cluster and the state does not fall below a predetermined threshold. 

Then “using a Markov graph, the system presents the probabilities of future situations 

and graphically depicts the fitness values of these situations” based on the fitting of 

clusters to states (10). The advantage of this process is that little actual online computing 

is done. Most of the scenarios grouped into clusters are defined off line by subject matter 

experts leaving only aerial reconnaissance and matching completed online. This saves 

time and effort by not bogging down the military online community which tends to see a 

lot of action during tactical scenarios, but also incorporates data to future mapping 

predictions.  

Celik and Son (10) used a Monte Carlo-based, dynamic-data-driven-adaptive, 

multi-scale simulation (DDDAMS) to control the fidelity states of overloaded systems in 

supply chains. Fidelity is defined as how closely the simulation model imitates the true 

environment. Therefore, the higher the reported fidelity, the closer the DDDAMS system 

showed, predicts the actual states of the supply chain. Celiks and Sons methods “…1) 

handle the dynamicity issue of the system by selectively incorporating up-to-date 

information into the simulation-based real-time controller, and 2) introduce adaptive 

simulations capable of adjusting their level of detail according to the altering conditions 

of a supply chain in the most economic way. (6)” Sensors on the shop floor report fidelity 

states to the DDDAMS system which analyzes the data using four imbedded algorithms. 
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The first algorithm detects noise and any abnormal status of the system via the reported 

sensor data. The second algorithm selects the correct fidelity of the system using a 

Bayesian Belief Network. The third algorithm examines the available resources of the 

system and then chooses the available fidelity for each component. Finally, the fourth 

algorithm predicts the future performance of the system and selects the optimal control 

tasks to complete based on the identified fidelity of the system.  

In addition to the sensory data used above, DDDAMS also used performance data 

which “…shows the cumulative effect of the successive changes in a system state or 

sensory data.” This data, unlike sensory data, were collected at all times regardless of the 

fidelity state of a system.  Following the culmination of all the information the DDDAMS 

system, an optimal fidelity state was achieved.  

Celik and Son tested this system on a manufacturing supply chain where the goal 

was to find “the best preventative maintenance scheduling and part routing” (6). Using 

historical data for prior information, DDDAMS was applied to the supply chain to form 

the initial fidelity measurements. Celik and Son conclude, that “Monte-Carlo based 

fidelity selection would lead to highly accurate results while saving computational 

resources and time” (6). 

The previous literature review highlights advantages and areas of application in 

which subjective Bayesian simulation techniques have been used for system prediction. 

The main difference in the proposed research from that of the past, shown above, is the 

influence to design of experiments. In addition to using the simulation to generate 

(predict) distributions as evidence for a real test, simulation can augment (replace) actual 

test data provided the simulation is valid and it is accredited for such use. The subsequent 
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methodology focuses on augmenting test results leaving the accreditation challenge to 

future research.  
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3. Background 

 

 This effort focuses on the advantages of implementing simulation techniques to 

reduce the amount of time, runs, and data to be collected in actual experiments. Part of 

the research extends the work of Wellbaum et al (11). Therefore, a brief discussion of the 

overhead watches and loiter system (OWL), operation center, data collection, testing 

issues, and the simulation model is warranted. The limited OWL test data is used in 

Chapter 5 to demonstrate (in a limited manner) the methodology of Chapter 4.   

3.1 OWL Platform 

 The platform all the data was collected on is called the overhead watch and loiter 

system (OWL). This is a modified configuration of the type A RAVENS used in the Area 

of Responsibility (AOR). Following the implementation of the RAVEN version B, A 

versions were disengaged and returned to the U.S. Once state side, AFRL over-purchased 

a large amount of the platforms after removal of the classified systems. From this surplus, 

the Air Force Institute of Technology acquired four RAVENS and made additional 

avionics modifications to tailor the platform to future research efforts. 

3.1.1 Modified Avionics System  

 The Procerus Kestrel avionics system (OWL shown in figure 1) serves as the 

autopilot once the OWL has been hand launched. It combines air data sensors, 

accelerometers, and gyroscopes to navigate missions streaming from the operations base. 

In return, the system provides continuous updates on airspeed, altitude, orientation, and 

body measurement back to the user. 
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3.1.2 OWL Specifications and Operations 

The OWL platform has roughly a four foot wingspan and a body length of three 

feet. As seen in Figure 1, the OWL lacks landing equipment and thus requires a soft 

terrain to land in order to prevent damage to the body. The propulsion system is located 

behind the body to push the platform during flight. Once airborne, OWL receives and 

relays information via the sensor in the nose cone. This information is then relayed to the 

avionics system located behind the orange plate on the side of the platform next to dual 

2100 mili-amp-hours batteries. The avionic system then controls the speed, elevation, and 

direction of the OWL for the duration of the flight via the propeller and the flap located 

on the tail of the platform. Each avionics system can relay information via different 

communication channels to prevent confusion of systems during multiple OWL flights.  

Following mission completion, the OWL is disassembled and placed into a 2’x6”x1’ 

travel box stored in the operations base trailer.  

 

Figure 1. OWL 

3.2 Operations Base 

The operations base is a converted mobile trailer roughly forty feet in length, 

twenty feet in width, and six and a half feet high. The rear half of the trailer was 



17 

converted into a work shop to repair the platforms and recharge the OWL batteries. In 

contrast, the front of the trailer contained all the computer hardware, software, and 

monitors used to control and document the OWLs flight.  

3.2.1 Computer Software 

Virtual Cockpit is the main program for controlling the OWL. In this system, the 

user plots the course of the mission, and then uploads it into the database. Before the 

OWL is launched, the flight controls are given over to the computer system which relays 

the series of mission coordinates for each OWL to fly. Simultaneously diagnostics from 

the OWLs are returned to the computer system and recorded in a database. 

3.2.2 Video Surveillance Monitors 

The video feedback from the OWLs is relayed to base operations and then 

displayed on a standard 30” Samsung flat screen monitor. Each signal is displayed on a 

quarter of the total surface area of the screen in order to capture up to four video relays at 

one. Figure 2 shows the flow of information and relay of signals between the monitors in 

the operations base to the OWLs. 
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Figure 2: System Dynamics 

3.3 Testing 

 Testing presented a multitude of problems since the entire procedure was created 

from scratch and had to abide by both the OWL flight regulations and Camp Atterburry 

safety standards. Therefore, test members, determined the correct UAV launch protocol, 

testing location, interruption mitigation techniques, and metrics to measure OWL 

performance prior to any tests.  

3.3.1 Preflight Set Up and Diagnostics 
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Before testing could commence, a preflight checklist and test flight was 

conducted to ensure safety during the mission. The preflight checklist verified that each 

OWL was oriented and responding appropriately to the computer software in the 

operations base. Following completion of the checklist, a manual flight was launched to 

assess if the platform was responding appropriately to the remote stimulus. After 

successful completion, the preflight is not conducted again unless any malfunctions or 

significant breaks occurred during testing. 

3.3.2 Testing Scenarios 

The testing scenarios are designed in order to observe the added benefit of 

multiple UAVs operated solely by one person. Therefore, each testing scenario consisted 

of deploying one, two, or three UAVs to observe a forward location for some duration of 

time; and measuring the resulting time over target and the value added time for each 

scenario. The more time over target and total value added time observed indicated there 

was additional added benefit, to the user, or deploying the corresponding number of 

OWLs.  

3.3.2.1 Time over Target 

Time over Target (TOT) is defined as the time an OWL reached the designated 

marked area until it is instructed to return to the operations base. Transit time is not 

counted in this metric as the quality and availability of the video feed varied due to 

weather.  
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3.3.2.2 Total Value Added Time 

During the course of the mission, the operator watches the relayed video feed on 

the monitor. This is exactly what “Value added time” pertains to; the time the operator 

spends visually assessing the target. Thus, by stopwatch, the amount of time the operator 

spent in the control center is recorded during deployment scenario as Total Value Added 

Time (TVAT) for each test.  

3.3.4 Testing Location 

Several local locations near Wright Patterson Air Force Base were proposed to 

test the OWLs for data collection. However, due to DoD regulations, the nearest airstrip 

cleared for testing was located at Camp Atterburry in Indiana (longitude:086-02’18”, 

Latitude:39-17’15”) . Located 709 feet above elevation, the airstrip offered ample room 

for multiple flights up to 739 feet in elevation. Additionally, few flights occupied the 

airspace which left data collection primarily uninterrupted. The main disadvantage, 

however, is the 3 hour distance from the camp Atterbury to the nearest parts store in 

Cincinnati, Ohio. Therefore, careful planning must account for all replacement parts of 

the OWLs and operation centers. 

3.3.5 Testing Issues 

Generally the OWLs were allowed to complete all mission without interruption. 

Occasionally, though, mission essential and commuter aircraft reserved the right to land 

in the airstrip. To mitigate these interruptions, the operators changed the flight path of the 

OWLs in order to conserve the current mission without conflicting with the additional 

aircrafts. Since they were able to preserve the current elevations and total distance the 
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platform flew to the target, no abnormal battery usage occurred. Therefore the validity of 

the data was preserved and used for the sequential validation and simulation efforts.  

3.4 OWL Simulation 

 Wellbaum (11) created an ARENA simulation used to model time over target and 

added value time of the operator and the OWLs during various scenarios. The user 

entered the number of OWLs on the mission and the successive time between launches. 

The simulation returned the resulting time over target, value added time, repair time, and 

battery life for the specified duration. The only issue discovered with the simulation was 

it based all results on an unrealistic battery life distribution (Cottle 2011).  

3.4.1 Changes in Battery Life Distribution 

  Simulation battery distributions differed from operational testing results as they 

were derived by running the OWLs indoors, mounted on a platform, until the batteries 

were completely drained. This created problems with comparing the simulation output 

with the operational output for two main reasons.  

First, in the operational environment, there existed extraneous factors, like wind, 

that caused a non-constant drain on the battery power required to sustain flight. The 

simulation did not account for these factors which, in turn, rendered inconsistent results 

compared to observed values. 

Second, the mission life was determined based on a distribution that modeled the 

battery life until failure. This does not consider the amount of power used for transit time 

to and from the target. Additionally, the batteries drained at a non-constant rate after 10.6 
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amp-hours remained. Therefore, for the safety of the OWLs, the operator instructed 

aircraft to base when the battery life dropped below 10.8 amp-hours. 
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4. Methodology 

 

 This thesis defines methods to implement Bayesian statistics to exploit the 

advantages of simulation data in lieu of operational test data. To accomplish this task, the 

simulation data must be validated against observed operational test data; otherwise all 

sequential efforts will be in vain. Following successful validation, the information will be 

utilized to gain further insight into probability outcomes based on prior information 

obtained during testing. Finally assessment, analysis of results, and comparison of the 

results to the operational DOE design is completed to determine the validity of using 

simulation data in lieu of prior operational test data.   

4.1 Simulation Validation 

The preliminary step in implementing simulation data in lieu of operational test 

data is the determining the validity of the simulation output. To accomplish this task, the 

simulation is replicated and the response output is fit to a distribution. Then, the response 

expected value is determined along with a ninety percent confidence interval about that 

mean. Finally, observed test data is compared against the constructed confidence interval 

to assess compliance of the simulation to operational test data.  If enough operational data 

is collected to determine the result distribution, e.g., mean, and standard deviation of the 

operational data, then the simulation data can be updated to more precisely model the 

observed testing data. However, if small data sets interfere with distribution estimation, 

the simulation can only be “checked” by assessing whether the value of the observational 
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metric falls in a ninety percent confidence interval of its’ simulation output counterpart. 

This latter approach is used in the Chapter 5 example.   

4.2 Posterior Predictions 

 If significant discrepancies occur between the simulation output and the 

operational data collected, it is highly suspect to deem the simulation validated and 

assume that the observational data is drawn from the simulation output distributions. 

However, if the operational data falls within a ninety percent confidence interval of the 

generated simulation output, the observed data is assumed adequately modeled by the 

corresponding simulation output distribution. This prior information is used to update 

predictions on future events using Bayesian probability. Specifically, future outcomes are 

further scrutinized using previous data observations to enhance the knowledge of 

obtaining certain events based on the equation 

    .   (1) 

 In this equation, X is the random variable from the simulation output; T is the proposed 

time threshold of the simulation distribution; Y is the observed random variable assumed 

from the same distribution as X; and t is the observational recorded time. This posterior 

knowledge should not only increase confidence in obtaining various TOT and TVAT 

thresholds, but add additional information to design of experiments matrices. The 

Chapter 5 example demonstrates the use of prior information, such as from a simulation, 

updated and using real test data. Interpretation of the posterior information is provided.  
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4.3 DOE Analysis 

 The validated simulation data is also used to determine changes in critical factors. 

Again, this procedure should only be used for a validated simulation since invalid 

simulation output cannot be modeled correctly to account for operational data. This fact 

can also be complicate by the sparse data collected which limits the approximation of 

determining a distribution to fit the operational data. For the valid simulation data, the 

mean TVAT and TOT times are substituted into the real test response matrix, initially 

one metric at a time. Then combinations of mean TVAT and TOT values are swapped 

into the DOE matrix and analyzed until the matrix is composed strictly of validated 

simulation data respectively. Analysis of the results indicates the impact of utilizing data 

from a validated simulation in lieu of operational test data.  
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5. Results and Analysis 

 

The previous chapters highlight the methodology and reasoning behind the 

findings in this chapter. This chapter presents a preliminary case study using the very 

limited OWL data available. The first step in evaluating the methodology proposed above 

is validating the simulation output since both the integrity of both posterior predictions 

and DOE analysis depend on the results. Then, given correct application of the validation 

technique, Bayesian statistics is applied to gain more information on posterior 

predictions. In turn, this should increase user confidence in obtaining TOT and TVAT 

objectives which can be utilized via DOE to gain more insightful information about OWL 

characteristics. Finally, validated simulation data is substituted into a simple 31 DOE 

model to demonstrate the effectiveness of valid simulation data in lieu of operational 

data.  The results should show no significant difference between simulated data and 

operational data, or change in critical factors between the original DOE matrix and the 

augmented matrix. 

5.1 Data Validation 

The simulation was validated in two increments, (Wellbaum et al. 2010) and 

(Cottle 2011), and the results showed the simulation data to be representative of 

operational data observed from preliminary OWL testing. Therefore, in this instance,  one 

should not expect any significant difference between the operational data and the 

simulation data that would indicate the simulation was an invalid representation of the 

OWL tests. However, one cannot simply assume the OWL simulation is valid since the 
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sequential effort’s results depend on the accuracy of the simulations output to the 

operational data. Therefore, the OWL simulation is validated for compliance with new 

operational test findings below. 

   The simulation ran for one hundred iterations for delay between launch settings 

of 5, 20, and 30 minutes using two OWLs. The total time over target, TOT, and total 

value added time, TVAT, output was analyzed in jmp version 8 to determine the output 

distributional characteristics. In each test case, there was insufficient evidence to reject 

the null hypothesis and conclude that the data was not drawn from a Weibull distribution 

(shown in figures below). This was based on a large value of .25 which exceeded the 

alpha critical value of .05. Therefore, ninety percent confidence intervals and expected 

value estimates were calculated for both metrics, TVAT and TOT, on each test. Based on 

the results below, the TOT and TVAT from test one, and TVAT from test three did not fit 

into the corresponding confidence intervals (highlighted in red). In fact, the observational 

data points, for test one, fell so unrealistically far outside the confidence intervals that  

there is no reason to accept that the simulation data is a valid representation of its 

operational counterpart. However, the test three TVAT metric is substantially close to the 

lower bound of the ninety percent confidence interval. Since ten percent of the data is 

expected fall outside the interval, there is insufficient evidence to reject that this metric 

does not come from the proposed Weibull distribution. Therefore, although a discrepancy 

exists, the TVAT value from the operational test three was included for further analysis 

unlike the test one values which showed an enormous conflict with the simulated data 

distributions.   
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These conflicts may have occurred for several reasons. First, the simulation is 

assumed validated against the operational activities. If any part of the simulation does not 

capture the true nature of the OWL, and its tasks, then the simulation will produce data 

inconsistent with the operational outcome. Second, although test one went very smoothly, 

the simulation may not account for the problems that can occur during testing like 

dangerous wind velocities, or interruptions during testing. Lastly, fitting a distribution to 

a single data point is impossible. If the simulation is correct, and that single data point 

was recorded in error or occurred from an unlikely series of events, the simulation data 

will still be considered invalid.

 

 

Figure 3: 5 Minute Delay TVAT Distribution Estimate 
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Figure 4: 20 Minute Delay TVAT Distribution Estimate 

 

 

Figure 5: 30 Minute Delay TVAT Distribution Estimate 
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Figure 6: 5 Minute Delay TOT Distribution Estimate 

 

 

Figure 7: 20 Minute Delay TOT Distribution Estimate 
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Figure 8: 30 Minute Delay TOT Distribution Estimate 

 

Table 1: TOT & TVAT Comparison of Operational and Simulation Data 

 

 

5.2 Posterior Prediction Estimates 

 Since four of the six metrics in the previous section are assumed to come from 

their corresponding identified distributions, additional insight can be gained with respect 

to probability outcomes. One expects the chances of obtaining certain TVAT and TOT 

thresholds to increase or decrease depending on the location of the observed value with 

respect to the mean of the corresponding distribution. In any case, the updated probability 

outcomes should be more informative for each threshold identified below when 

Test Number Delay Time Metric Lower Bound Upper Bound Mean Observed Value
1 5 Minute Delay TVAT 86.521 101.68 95.26574 69.35
1 5 Minute Delay TOT 103.006 124.96 115.6092 84.24
2 20 Minute Delay TVAT 96.43 111.7 105.245 109.5
2 20 Minute Delay TOT 116.59 139.51 127.7268 128.39
3 30 Minute Delay TVAT 105.21 121.04 114.3589 104.58
3 30 Minute Delay TOT 121.25 147.16 136.1308 129.49
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compared to the prior probabilities. Therefore, one expects to observe a change in the 

posterior probabilities when compared to the prior probabilities which would indicate a 

benefit from prior knowledge with respect to probability outcomes. 

 With a validated simulation observational data may used to predict posterior TOT 

and TVAT probability outcomes. Subsequent posterior TVAT and TOT probabilities are 

compared to prior probabilities of TOT and TVAT exceeding a certain time using the 

Bayesian equation listed above. This result showed the probability of the OWLs yielding 

a TVAT and TOT of a certain number of minutes listed in the chart below. The results, 

highlighted in green, show an increased probability in obtaining a certain threshold given 

an operational time was observed, in every case except the TVAT metric in test three.  

Note that even intervals were not used across each test measure in order to show the 

impact of additional information across each differently defined simulation distribution. 

Furthermore, although included to indicate the significance of prior information, test one 

metrics cannot be considered valid.    
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Table 2: TVAT & TOT Prior & Posterior Probability Comparison 

 

(T is in minutes) 

5.3 Implementation of Design of Experiments 

 Since four of the six metrics were determined as representative of the operational 

test data, they can be utilized in future DOE-based analysis. Stated simply, comparing the 

test matrix composed solely of operational data to the matrices augmented with 

simulation data shows the impact of simulation data in DOE. Additionally, since the data 

is validated, there is no reason to suspect a change in identified critical factors. This 

indicates that simulation data can be used in lieu of operational data, for non critical 

factors, in DOE.  

Test Delay Time Measurement T Prior Probability Posterior Probability Change
1 5 Minute Launch Delay Total Value Added Time 70.0000 0.99975 0.99995 0.00019
1 5 Minute Launch Delay Total Value Added Time 80.0000 0.99290 0.99310 0.00019
1 5 Minute Launch Delay Total Value Added Time 90.0000 0.87074 0.87091 0.00017
1 5 Minute Launch Delay Total Value Added Time 100.0000 0.13987 0.13989 0.00003
2 20  Minute Launch Delay Total Value Added Time 100.0000 0.86923 1.00000 0.13077
2 20  Minute Launch Delay Total Value Added Time 110.0000 0.14107 0.79298 0.65191
2 20  Minute Launch Delay Total Value Added Time 115.0000 0.00123 0.00692 0.00569
2 20  Minute Launch Delay Total Value Added Time 120.0000 0.00000 0.00000 0.00000
3 30  Minute Launch Delay Total Value Added Time 90.0000 0.99945 1.00000 0.00055
3 30  Minute Launch Delay Total Value Added Time 105.0000 0.95272 0.99470 0.04198
3 30  Minute Launch Delay Total Value Added Time 120.0000 0.09721 0.10149 0.00428
3 30  Minute Launch Delay Total Value Added Time 135.0000 0.00000 0.00000 0.00000
1 5 Minute Launch Delay Total Time over Target 90.0000 0.99701 1.00000 0.00299
1 5 Minute Launch Delay Total Time over Target 105.0000 0.92601 0.92670 0.00069
1 5 Minute Launch Delay Total Time over Target 120.0000 0.27861 0.27882 0.00021
1 5 Minute Launch Delay Total Time over Target 135.0000 0.00000 0.00000 0.00000
2 20  Minute Launch Delay Total Time over Target 115.0000 0.96498 1.00000 0.03502
2 20  Minute Launch Delay Total Time over Target 129.0000 0.47190 0.91508 0.44318
2 20  Minute Launch Delay Total Time over Target 135.0000 0.08138 0.15780 0.07643
2 20  Minute Launch Delay Total Time over Target 140.0000 0.00138 0.00268 0.00130
3 30  Minute Launch Delay Total Time over Target 120.0000 0.95960 1.00000 0.04040
3 30  Minute Launch Delay Total Time over Target 130.0000 0.80127 0.98259 0.18133
3 30  Minute Launch Delay Total Time over Target 140.0000 0.34965 0.42878 0.07913
3 30  Minute Launch Delay Total Time over Target 150.0000 0.01138 0.01395 0.00257
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The mean of each simulation output, described in section 5.1, was substituted into 

a simple 31 DOE model consisting of single and all combinations of valid simulation 

means for the corresponding operational response variables. The TVAT and TOT 

simulation data from test one were excluded from this analysis primarily because they are 

sure to change the characteristics of the factors in a design of experiments model. The 

results displayed below, for both TVAT and TOT models, show overlapping of 

confidence intervals between the original TVAT and TOT models and their simulation 

data counter parts. Further analysis shows there is quite a vast overlapping consistency 

across TOT and TVAT models.  Therefore, there is insufficient evidence to conclude that 

swapping means of valid simulation data, into a DOE model, will change the outcome of 

the factors for a DOE model. Hence, there is evidence that valid simulation data can be 

used in lieu of operational data without jeopardizing the quality of the DOE analysis 

outcomes.   

 

Figure 9: 95% DOE Confidence Interval Comparison 
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6. Future Recommendations  

 

Based on the results above, there exists evidence supporting the use of valid 

simulation output and prior operational output to predict posterior probabilities and aide 

in DOE analysis. However, simulation is not the only operations research specialty area 

that can be applied to UAV testing. Future efforts should be geared toward all focus areas 

of operation research. Specifically, future efforts should incorporate decision analysis, 

optimization via linear programming, optimization via simulation, and design of 

experiments focused on enhancement of OWL performance and functions. Only through 

the combination of all these concentrations simultaneously can the full operational 

potential of the OWL be determined.  

6.1 Decision Analysis  

 The systems engineering department of the Air Force Institute of Technology was 

interested solely in maximizing value added time and total time over target. However, 

there was very little research performed to answer the age-old dilemma of “ability” 

versus “need”. Just because you can obtain a certain degree of a metric does not mean 

there is any added benefit past a certain point. Therefore, a decision analysis study should 

be performed to determine if maximizing those metrics yields the most benefit to the 

operator or if there are additional metrics of interest. One may find that the operator is 

actually interested in other important metrics that were overlooked in the early stages of 

test planning. Future efforts can utilize value focused thinking, or even expected utility, 

to establish, quantify, and measure the current needs of UAV operators in the AOR. 
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Forming this preliminary foundation will yield a new set of ranked preferences, goals, 

and cost analysis that will guide future OWL research.   

6.2 Linear Programming Optimization 

 Following establishment of user goals, additional optimization techniques should 

be performed to analyze the various numbers of users, OWLs, and OWL components to 

achieve desired thresholds for a various number of targets while considering budget and 

resource constraints. One way to accomplish this task is through linear programming 

(LP). Following the identification of system measurements, goal programming along with 

other LP techniques can be utilized to optimize the OWLs performance in accordance 

with strategic goals. This would lead to not only a leaner system, but possibly several 

optimal scenarios that would increase flexibility in the protocol for OWL deployments.     

6.3 Simulation Optimization 

 After preliminary goals and metrics have been established, simulation can be 

employed in a different context than in this work. Specifically, simulation should be 

applied to predict how future changes in OWL deployment scenarios would affect the 

accomplishment of the mission. Manipulating the number of OWLs, number of users, the 

flying altitudes, battery types, launch times, and the camera types should yield different 

optimal outcomes of interest to the mission. However, the current simulation must be 

incrementally validated for future research, giving a simulation thesis more of a twofold 

purpose.     
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6.4 Small Data Set DOE 

 This thesis sought to utilize DOE and simulation to predict the impact simulation 

can have on testing and evaluation. However, several interruptions, uncooperative 

weather, and contracting issues handicapped the size of the operational data set collected. 

Therefore, design of experiments should be applied to the testing of the OWL with a goal 

to minimize testing while maximizing the use of quality data. Through smaller yet more 

informative tests, critical factors can be identified and further explored where bigger test 

have failed due to lack of data. This application will yield a plethora of information on 

which test avenues should be explored to utilize the simulation procedure listed in the 

methodology. Furthermore, future DOE testing should incorporate more than just two 

variables. Before any testing commences, the test committee should consult systems 

engineering documents to determine which components are tied to functions that may 

cause changes in OWL performance. Identifying these function influencing components 

should lay the ground work for a complete DOE map of factors to explore. In turn, the 

test design will be geared toward minimal data collection with the intent of maximizing 

benefit from data, which will be beneficial considering how volatile OWL data collection 

has been.  

6.5 Summary of Future Work 

 In the past several years, a lot of work has been accomplished on various aspects 

of the OWL platform. However, as mentioned above, the accomplishment of the OWL 

mission can be scrutinized through various operations research techniques which have 

not been applied to date. Through the application of simulation, decision analysis, liner 
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programming, and design of experiments the full potential of the platform can be 

achieved. This, in turn, should influence improvements and processes on the OWL 

platforms currently in the AOR to increase mission effectiveness.   
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Appendix A: Blue Dart 

Test and evaluation (T&E) is costly to the DOD and the United States Air Force. 

New, innovative uses of simulation technology have emerged as a partial solution to the 

challenges facing T&E. This research develops and discusses a methodology to utilize 

minimal data sets augmented with simulation, Bayesian analysis, and design of 

experiments, to reduce the level of live testing required. A small fairly notional data set is 

used to discuss the methodology.    

Validated simulations are crucial if simulation hopes to augment T&E. This 

research discusses some simulation practices and how T&E data can be exploited to 

validate simulation models.   

While Design of Experiments (DOE) has been underutilized in the past for T&E, 

recent policy changes require its use. This work takes a preliminary look at how 

simulation can affect a test design both in terms of providing prior evidence of system 

performance and in replacing components of the actual test.  

T&E practices need to evolve to meet current DOD fiscal budget restraints. 

Simulation, coupled with statistical techniques, offer a viable solution method to help 

achieve DOD T&E goals.  
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